Intro to Color Control

Presented by: David Hunter/Katie Stull Second Tuesday Webinar March 14, 2023

Part 1: Demystifying Color

Agenda

- Color Fundamentals
- Terms and Definitions
- Overview of 5 C's of Color Management
- Covering the 1st C- Capturing your Data
- Demonstration and Trial that you can do...

Quantifying Color

Electromagnetic Spectrum

Color as the Eye Interprets it

R•O•Y•G•B•I•V

No Light

Need Light Source (Illuminant)

Prism

- White Light- Composed of all colors of spectrum
- Black Light?

Spectral Definition

One Color

- **380-720 NM**
- 10 NM increments
- 32 numbers represent one color
- Can predict result of new light source
- Easily Convert to CIE-Lab

CIE-Lab Definition

One Color

- 3 numbers, L* lightness, a* red/green axis, b* yellow/blue
- Illuminant dependent- Only good for 1 Light source

Define Printing Gamut and Measured Colors

GRACoL Print Gamut and PMS Colors

• 58% of colors within $2\Delta E(00)$

Summary

Light Affects Color

- Spectral definition is more desired for defining colors
- CIE-Lab is still valuable for editing, correcting colors
- Spectral Prediction for Spots/Tints/Profiles is future

Definitions/Vocabulary

Device Consistency

- Precision
- Process Control- G7
- Shared Visual Appearance

Device Matching

- Accuracy
- Color Conformance- EF
- Color Match

Color Control Fundamentals 5 C's Color Color Control

STEPS TO DEFINING PROCESS DISCIPLINE

5 C's of Color Control

Capture – collect device (printer, instrument, lighting) capabilities
Calibration – make device consistent to itself & over time
Characterization – define device gamut and create profile
Conversion – map one gamut to another in the workflow
Conformance – verify new results and meet expectations

STEPS TO DEFINING PROCESS DISCIPLINE

First of the 5 C's of Color Control

Capture data - measure, collect data all devices

Calibration — make device consistent to itself & over time
Characterization — define device gamut and create profile
Conversion — map one gamut to another in the workflow
Conformance — verify results and meet expectations

Capture Data with Measurement Instruments

Quantify color with multiple capabilities

Capture- Selecting a Measurement Device

Factors to Consider

- Ease of use- measuring single color? More?
- Level of automation (auto patch/ bar code)
- Substrate material thickness/transparency
- Aperture Size per printed line screen
- Textured material
- Other measurement devices to match
- Price and Accuracy/Precision

Capture with Manual Measurements

Manually measure one color at a time

Capture with Single Strip Measurements

Measure color bar, patch size dependent on instrument

Calibration (process control) and Conformance applications

Data from measuring 42 patch target multiple times

Exposes state of "exactness" and "repeatability"

Capture- How Precise is an Instrument? Data from measuring 42 patch target 12 times Exposes state of "exactness" and "repeatability" EF Average: .37 i1Pro1 1.00 0.50 Discontinued 0.00 2 4 8 10 Max ΔE E-Factor AVE. AE AE Std. dev.

Data from measuring 42 patch target multiple times

Data from measuring 42 patch target multiple times

Exposes state of "exactness" and "repeatability"

ThromaChecker.

Data from measuring 42 patch target multiple times

File list:

Data from measuring 42 patch target multiple times

Exposes state of "accuracy" and "repeatability"

Eliminate Sending Instruments Back Annually?

Prove ISO Compliance and never send back again

- Prove Accuracy of instrument
- Save a lot of money, \$750 for i1/yr, +\$1000 for Exact/Techkon, more ITX
- Being without instrument for approximately 2 weeks
- No shipping/insurance fees

Instrument Inspector

Company Name: ABC Corp. 2019

Cas #

0.53

1/7

0.29

Ren José

Capture- Understand Measurement Devices

Next Measure Production Printers, any color bar

Proofer

Conventional Press

Capture- Baseline Production Printing Device

Any Color Bar, formatted for Instrument

Exposes state of "accuracy" and "repeatability" of printer

Capture- Baseline Production Printing Device

Any Color Bar, formatted for Instrument

Exposes state of "accuracy" and "repeatability" of printer

Application Demonstration

Measuring Data Realtime, Production

Measurement Devices

T-42 TargetISO 23031-2020

Production Printing DevicesAny Color Bar

Call to action: Download- Print- Measure

Baseline Your Printing devices

- Production Printing Devices
- Assess against GRACoL
- Assess G7 Compliance
- Assess printer to printer match

For step by step instruction scan QR code or visit: https://chromachecker.com/trial

© Copyright 2023 ChromaChecker Corp

ChromaChecker;

Capture- Summary: 1st C of the 5 Cs

Capture Data and Conformance (verification)

- Capturing data allows for baselining devices
 - Instruments, Printers, Light booths and more
- Determining Production Standards, Tolerances
- Calibration
- Characterization
- Conversion
- Conformance

5 C's determine Quality of Color Match

Need Good Components for all 5 C's to have best color

- Precision and Accuracy achieved with all 5
- Might not need all 5 C's depending on your Expectations

Capture- Determining Which Device is Required

EF

Considerations based on E-Factor

- Tighter the expectations the more critical the accuracy
- Precision- repeatability/consistency
- Accuracy- in relation to "Master" instrument
- Not always directly related to price

Capture- Is Instrument Precise Enough?

E-Factor- Expectations

Instrument Gauge Factor

- Every Manufacturing Industry has IGF
- ChromaChecker introduces to Print Industry
- Workflow Tolerance:
 - of precision + cross instrument variation
 - allocate down to 20% to instrument variation

Capture- Interpreting the Data

"Stacking" Effect of Multiple Devices

- Multiple instruments measuring same color: Deviation
- Instrument use different technology, lighting, math
- •With two Instruments double numbers, three= triple...

Interpretation of data reveals:

- (2) i1 Pro1 \mathbf{E} = .74, then workflow \mathbf{E} = 3.7
- (2) i1Pro2 [F] = .28, then workflow [F] = 1.40
- (2) eXact $\mathbf{II} = .10$, then workflow $\mathbf{II} = 0.50$

Capture with Automated Target Measurements

Automated x, y measuring large targets

- Characterization (ICC Profile) targets
- Predefined locations with i1iO
- Bar code incorporated with target for automatic routing

Capture- Interpreting the Data

"Stacking" Effect of Multiple Instruments

Measuring same color differently results in Deviation
 FAIL customer tolerance before print page 1

Create Profile Instrument A Verify Profile Fails!

Capture- Interpreting the Data

"Stacking" Effect of Multiple Instruments

FAIL customer tolerance before print page 1

Capture- How Accurate is an Instrument?

Comparing how different devices measure color

Exposes state of "correctness" and closeness to "bullseye"

Capture- How Accurate is an Instrument?

Comparing how different devices measure color

Exposes state of "correctness" and closeness to "bullseye

If E-Factor Workflow > Tolerance= **PROBLEM**

Capture- Instrument Differences affect Printer E-Factor

If Instrument differences > Tolerance

- Cause the Printer E-Factor to appear to FAIL
- Problem is Instrumentation Differences
- ChromaChecker can minimize this difference: Harmonization

Summary: Capture Instrument

Application and Use Cases

- Multiple instruments measuring same color
- Understand: Capture instruments are different
 - Even two units one serial number apart...
- ChromaChecker Instrument Inspector
 - Assess precision/accuracy each instrument
 - Warn when exceeds Tolerance Expectations
 - Can Harmonize to minimize differences

Transition from Graphic Arts to Manufacturing

Taking Raw Materials & Creating Products that Consistently Meet Customer Expectations

 Maximum Color Match Requires- Optimum process control, tighter metrics, optimum color conformance, lower EF

5 C's determine Quality of Color Match

Need Good Components for all 5 C's to have best color

- Precision and Accuracy achieved with all 5
- Might not need all 5 C's depending on your Expectations

