Calibration 2nd C

Presented by: David Hunter

STEPS TO DEFINING PROCESS DISCIPLINE

Second of the 5 C's of Color Control

Capture — collect your data

Calibration- make printer consistent to itself & over time

Characterization — define device gamut and create profile

Conversion — map one gamut to another in the workflow

Conformance — verify new results and meet expectations

Quantifying Color Differences

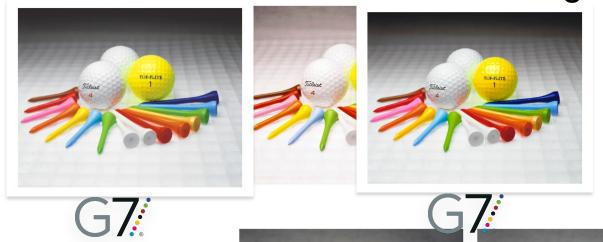
Without Data- No Idea What is Happening

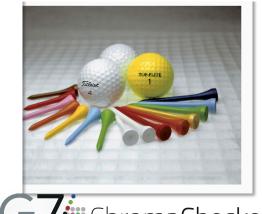
- Capture Data to understand Print Properties
- Choose measurement device based on need/price
- Conformance to Production Standard
- Measure print to understand salable vs waste

How to Determine What is Waste?

Print that isn't Salable...

- What visual difference is too different for customer to accept?
 - 1= Proofer
 - 2= Digital Press
 - 3= Offset Press


Quantify Differences- Print


What Type of Color Match?

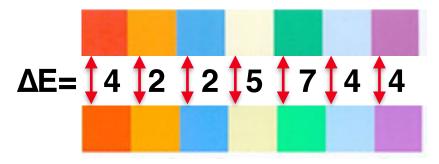
Match for specific individual brand colors: Spot Color

• Match between pages and or images: Process Color

Corp

Quantify Differences- Print

What Type of Color Match?


- Match for specific individual brand colors: Spot Color
 - ΔE (delta E) quantifies spot difference
 - Bigger the number, bigger the difference
- Match between pages and or images: Process Color
 - E-Factor (EF)- quantifies process color difference
 - Bigger the number, bigger the difference
 - Think ΔE for process colors, same relative difference

Printing Color, Quantify Differences

What Type of Color Match?

Match for specific individual brand colors: Spot Color

• Match between pages and or images: Process Color

Technical Definition: E-Factor

95% of colors are within that delta E

- Used to quantify page, and image differences (not spot)
- Requires at least 60 different patch color definitions
- Compares the patch definitions and sort highest delta E
 - 95% worst delta E is the E-Factor
 - CRF at 95th percentile ΔE 2000
 - Defined in G7 Color Space tolerances and TR016
- Co-relates great with spot color delta E differences
- Lower the number= Closer color match, better match

Printing Color, Need to Understand Boundarys

Know if Print is "Salable"

- In play vs. out of bounds
- Tribal Knowledge related to customer expectations
 - If no history, no tribal knowledge- large risk for loss
- Quantify Print Result using Metric for Color Difference
 - Eliminates human subjectivity, people see color differently
 - Single color comparison use: delta E (ΔΕ)
 - Pictures and Documents use: E-Factor
- Lower the number= Closer color match, better match

Calibration Agenda

Important C- without Consistency- No Color Matching

- Stabilize the process!!!!
- How to determine how much and what type of process control
- How to quantify printing device variations?
- How to build calibration schedules
- Is Calibration enough?

Calibration and Process Control

Definition of Process Control

Ensuring a device/**process** is predictable, stable, and consistently operates at a **target** level of performance, with only normal variation...

But, what's the definition of...

Target level of Performance? **Normal** variation?

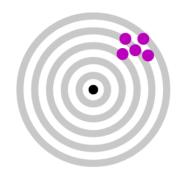
Calibration: How Often

It Depends on...

- Expectations for Salability
 - Tighter the expectations, the more often calibration performed
 - More calibration equals more cost (less production, more downtime)
- Rate of drift of Device
 - Different devices have different characteristics
 - Temperature and humidity influences on print performance
 - Variation of consumables: substrates, inks, toners, blankets
- Need to Test Rate of Drift using Conformance Software
 - Reports drift over time in E-Factor

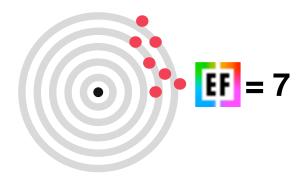
Calibration: How Often?

It Depends: Target Level of Performance/Normal Variation


- Target Performance relates to Expectations for Salability
 - Tighter the expectations, the more often calibration performed

- What is "normal" variation or rate of change for each device?
 - Variation of consumables/substrates, and Temp/Humidity changes

Calibration: How Often?

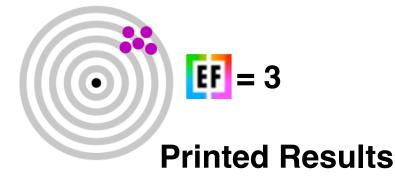

It Depends: Target Level of Performance/Normal Variation


- Target Performance relates to Expectations for Salability
 - Tighter the expectations, the more often calibration performed

- What is "normal" variation or rate of change for each device?
 - Variation of consumables/substrates, and Temp/Humidity changes

Calibration: How Often?

Target Level of Performance > Normal Variation= Success



Target Level of Performance < Normal Variation= Failure

How Often to Calibrate?

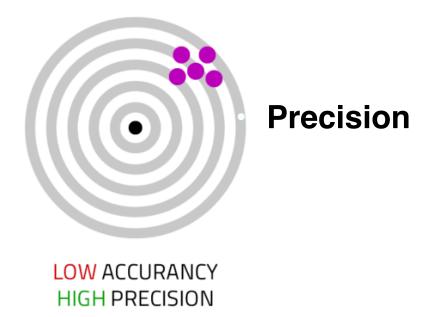
Calibration Once a Week- Normal Variation...

- Print color page every day/hour/minute over time
- Quantify E-Factor Difference of the prints over time
- Include Calibration schedule to understand if it needs more

Calibration for Workflow

Required to ensure Precision (Consistency)

- Calibration for Digital Printing devices (to itself)
 - Usually built into RIP for output device
 - Brings printer back to known, reproducible condition
- Calibration for Measurement Instruments
- Platesetter- Ensure repeatability over time
- Optionally- Calibrate Printing device to G7 condition
 - Adjust gray balance and NPDC to hit G7 Gray criteria
 - ChromaChecker can perform this



Calibration is Required for Consistency

- No consistency, no control
- Calibration stabilizes & brings device back to "normal"
- If device constantly "drifting", no hope of color accuracy

No Precision

LOW ACCURANCY
LOW PRECISION

Quantify Printer Variation

Understanding what is "normal" printer variation

- What types of printer variation?
- What affects printer variation?
- What variables need to be considered and controlled?
 - Depends on print technology
- What metric can we use to determine consistency?
- How to monitor your printer consistency?

Calibration- Schedule based on Variation

Three types of Variation:

1. Within page uniformity- Variation within one sheet

2. Between page repeatability- Variation from sheet to sheet;

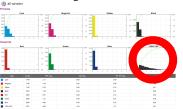
3. Between job reproducability- Variation from job to job;

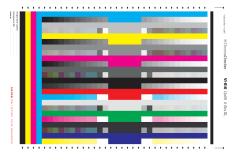
What Affects Printer Consistency/Precision

What affects print variation of output

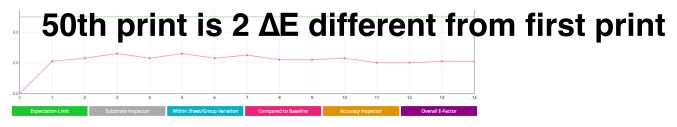
- Lack of preventative maintenance- run until it breaks mentality
- Consumable changes (paper/coatings/ink/toner)
- Volume of printed pages
- Temperature, Humidity, Dew Point variation

What procedures help compensate for variation


- Preventative maintenance schedules- Proactive assessment
- Calibration procedures and timing
- Goal is to bring device back to baseline condition



ChromaChecker Published Procedures


Assessing Normal Variation for any Print Technology

- Many variation issues are not disclosed, hard to tell
 - Within page uniformity unacceptable

First 50 prints shift color with some print technologies

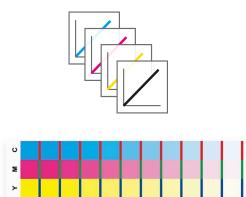
ChromaChecker Benchmark PDFs and directions

Never Average Measurement Data w/o Compare

Every one states to Average...

- If one bad measurement- can wreck average
- Use Variation tool
- Understand differences are small, before average done
- When Averaging- need Ave and Max Error saved with file

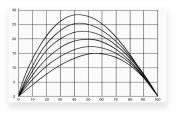
Quantify Printer Variation Summary


Critical to understand "normal" printer variation

- What types of printer variation? Within, between page/job
- What affects printer variation? Depends on print technology
- What variables need to be considered and controlled?
 - Depends on print process
- What metric can we use to determine consistency?
- How to monitor your printer consistency? Color Conformance!

DIFFERENT TYPES OF CALIBRATION PROCEDURES

Dependent on Goal and Workflow


- Device Calibration —
 Make device consistent
 - Built into RIP, adjust tint ramps of CMYK to baseline

- G7 Calibration methodology
 - RIP/3rd software adjust CMYK tonality for gray balance and NPDC
 - Provides a "shared appearance" not color matching

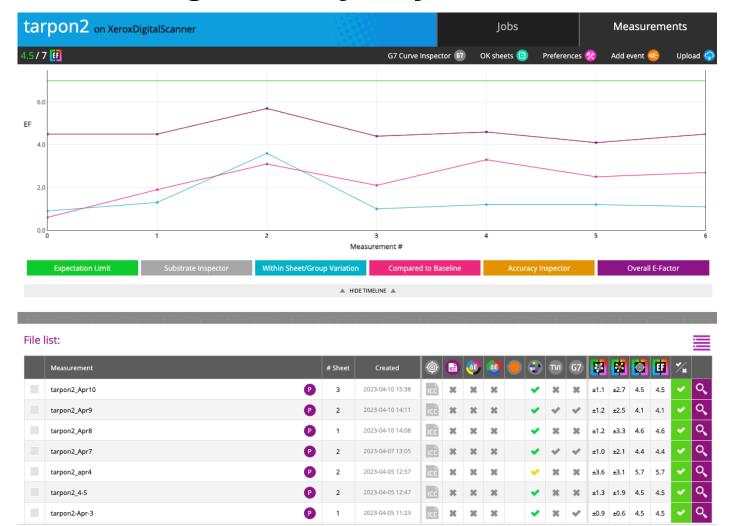
- TVI Calibration methodology
 - RIP/3rd software adjust CMYK tonality for TVI match

ISO 12647-2 TVI Curves

TRADITIONAL PRINTING PROCESSES: OFFSET/FLEXO/SCREEN

When to use which methodology?

- Ensure processes are consistent and calibrated:
 - Platesetter/Imagesetter is consistent
 - Printing process: consistent densities, and tonality (pressures)
- G7 Calibration methodology / TVI calibration methodology
 - RIP/3rd software adjust CMYK tonality for gray balance and NPDC
 - Creates new press curve (substrate based) add in workflow
 - Provides a "shared appearance" not color matching
 - Expected E-Factor to reference: between 4-6 if consumables good
 - If better match required create ICC profile after press is G7


DIGITAL PRINTING PROCESSES

When to use which methodology?

- Ensure processes are consistent and calibrated:
 - Platesetter/Imagesetter is consistent
 - Printing process: consistent densities, and tonality (pressures)
- Create ICC Profiles for substrate types
 - Once printer is consistent then create ICC Profile if necessary

Actual Scenario- Assessing Print

Print same target, every day for a week...

When to use What Methodology?

Digital Printing Processes: Digital Press/Large Format

- Ensure printer is calibrated: RIP supported
- Optional G7 Calibration methodology
 - If Expectations are "pleasing color," 5+ E-Factor- only G7
 - If Expectations are demanding, skip G7- create Characterization
- Create Characterization ICC Profile
 - Make immediately after calibration
 - Configure ICC Profiles for proper conversion in workflow

Calibration Summary

Color Control Starts with Calibrating all devices

- Process Control requires defined expectations of Result
- Expectations determine how much, what type process control
- Every type of device should be Calibrated
- Methods quantify variation and to build calibration schedules
- Is calibration control enough, or Characterization required...

- Assess G7 Compliance
- Assess printer to printer match

For step by step instruction scan QR code or visit:

https://chromachecker.com/trial

easure

