So You Think You Want a 2 \(\Delta E?\)

COLOR20

David Hunter

get the answers here

Audience Roles

What is your Primary Role

- Brand Manager
- Creative
- Print Buyer
- Prepress
- Printer Operator
- Manufacturer
- Other?

Audience Expertise

3 Questions- Heard of it, Understand it, Teach it Raise Hand for each definition, and keep raised

- Delta E 2000
- Different Delta E formulas
- CIE Lab color space
- Spectral color space
- Traditional Score Card App (ColorCert/PressSign)
- G7 Methodology
- Understand Standards only take us so far...

Agenda

Stack of Tolerances

- What reference? Aim point:
- Delta What? Λ ?
- Print Device capabilities
- Reference disagreements
- Substrate disagreements
- Measurement disagreements
- Light booth disagreements
- Rules of Engagement

Print Manufacturing Road Map

Maturity of Print Service Providers

Covering Eight Device Tolerances

Four levels Color Control Maturity

- Don't have the time to Cover the first three level
- They are in PDF of this presentation
- We are covering the most mature color control option
- Only way to hope to achieve a 2 ΔE tolerance
- Reference hand outs to provide road map to $2 \Delta E$

Defining Color Salability (Acceptability):

Depends on:

Print buyer's expectations

- Spot/brand color match
- Image/page color match
- Print device's production capability

- Important related variables (instrument/lighting/substrate)
- All of which affect print devices production capabilities

Requirements to Define Color Match

Requires:

- Defining Reference to Match:
 - Spot/brand color match
 - Image/page color match
- Allowable Tolerance (Δ):
 - Dependent on variables
 - Printing process, device, consumables, measurement, light booth,

How Different is Too Different?

Which one is Correct? Which is the Reference?

© Copyright 2020 ChromaChecker Corp

1a. Defining Print Reference (a la GRACoL)

Options for defining reference

- Physical Print
- Industry References (7 CRPCs)
- SCCA Adjusted to CRPC
- Actual Print Condition
 - Create custom ICC Profile

Limitations of Print Sample to Match to ...

No idea how it was printed

- Is it reproducible?
- Standard colorants, and densities for CMYK primaries?
- Dot gain, gray balance and overprints?
- Will require a lot of trial and error, and may never match

Characterized Reference Printing Conditions

Representing 7 different conditions/substrates 4 Coated stocks, 3 Uncoated stocks, ISO 15339 Part 2

SCCA Adjusted CRPC to accommodate paper

Works well if substrate is Lab=95,1,-4 (M1)

- But not many substrates match this value which requires:
 - Suppliers to apply SCCA to their process to match
 - Suppliers use M1 measurement devices
- If substrate is close (within 4 ΔE) then use SCCA

Limitations of Reference Print Conditions match

Works well if substrate is within 2ΔE (00)

- But not many substrates match this value which requires:
 - Suppliers to apply SCCA to their process to match
 - Suppliers use M1 measurement devices
- If substrate is close (within 4 ΔE) than use SCCA to define a new Reference Print Condition
- If substrate is greater than 4 ΔE, suggest creating Custom Profile (Actual print condition)

Actual Print Condition

Need to run on multiple printer runs

- Provides most accurate rendition of Print Condition
- Requires fairly small target (no dedicated press runs)
 - Spectral prediction software
 - Ready for ICC Max (next generation profiling)
- Use one master instrument that can be adjusted for
- Takes extra time and money, but much more accurate

Reference Options for Process Color

Road Map to Analytic Based Print Manufacturing

1b. Defining Brand/Spot References

Options for defining reference

- Master Library and palettes for different substrates
- PMS book (coated/uncoated/other)
 - Age of book, batch number
 - Physical sample
- Numeric value based on CIE-Lab (illuminant dependent)
- Numeric value based on Spectral (illuminant independent)

Options for Defining Brand Color References

Pros and Cons

- PMS Number (PMS 185) and the chip book
 - Visual only, every chip book is different
- Printed Color with CIE Lab values (GMI)
 - Every print is slightly different and ages differently
 - Lab values are not Illuminant independent, No tints
- PMS Number and digital value in CxF format
 - Which PMS Library? M0, M1, RIPs have M2 but you want M0, easy 5 ΔE difference accidental substitutions

Reference Disagreements- PMS Guides

	ΔE 2000	Pantone Guides PMS Book 1987	Pantone Guides PMS Book 1992	Pantone Guides PMS Book 1995	Pantone Guides PMS Book 2005	Pantone Guides PMS Book 2008km	Pantone Guides PMS Book 2013_Plus	Pantone Guides PMS Book 2017_Plus1	
ΔE =	PMS Book 1987 Pantone Guides		PANTONE 100 C 1.5 PANTONE Blue 072 C 5.2 PANTONE Green C 0.7 PANTONE Red 032 C 5.9	PANTONE 100 C 1.6 PANTONE Blue 072 C 5.4 PANTONE Green C 0.5 PANTONE Red 032 C 6.2	PANTONE 100 C 1.9 PANTONE Blue 072 C 4.2 PANTONE Green C 0.4 PANTONE Red 032 C 10.4	PANTONE 100 C 2.2 PANTONE Blue 072 C 3.5 PANTONE Green C 0.5 PANTONE Red 032 C 5.2	PANTONE 100 C 4.5 PANTONE Blue 072 C 3.6 PANTONE Green C 0.9 PANTONE Red 032 C 8.6	PANTONE 100 C 5.2 PANTONE Blue 072 C 4.2 PANTONE Green C 1.0 PANTONE Red 032 C 7.4	
	PMS Book 1992 Pantone Guides	PANTONE 100 C 1.5 PANTONE Blue 072 C 5.2 PANTONE Green C 0.7 PANTONE Red 032 C 5.9		PANTONE 100 C 1.4 PANTONE Blue 072 C 0.4 PANTONE Green C 1.0 PANTONE Red 032 C 0.3	PANTONE 100 C 0.4 PANTONE Blue 072 C 3.2 PANTONE Green C 1.0 PANTONE Red 032 C 4.5	PANTONE 100 C 0.9 PANTONE Blue 072 C 2.8 PANTONE Green C 0.9 PANTONE Red 032 C 0.7	PANTONE 100 C 4.9 PANTONE Blue 072 C 2.9 PANTONE Green C 1.5 PANTONE Red 032 C 2.9	PANTONE 100 C 5.5 PANTONE Blue 072 C 3.5 PANTONE Green C 1.6 PANTONE Red 032 C 2.0	
	PMS Book 1995 Pantone Guides	PANTONE 100 C 1.6 PANTONE Blue 072 C 5.4 PANTONE Green C 0.5 PANTONE Red 032 C 6.2	PANTONE 100 C 1.4 PANTONE Blue 072 C 0.4 PANTONE Green C 1.0 PANTONE Red 032 C 0.3		PANTONE 100 C 1.8 PANTONE Blue 072 C 3.3 PANTONE Green C 0.7 PANTONE Red 032 C 4.2	PANTONE 100 C 2.3 PANTONE Blue 072 C 3.0 PANTONE Green C 0.2 PANTONE Red 032 C 1.0	PANTONE 100 C 3.5 PANTONE Blue 072 C 3.0 PANTONE Green C 1.0 PANTONE Red 032 C 2.6	PANTONE 100 C 4.1 PANTONE Blue 072 C 3.5 PANTONE Green C 0.8 PANTONE Red 032 C 1.9	
	PMS Book 2005 Pantone Guides	PANTONE 100 C 1.9 PANTONE Blue 072 C 4.2 PANTONE Green C 0.4 PANTONE Red 032 C 10.4	PANTONE 100 C 0.4 PANTONE Blue 072 C 3.2 PANTONE Green C 1.0 PANTONE Red 032 C 4.5	PANTONE 100 C 1.8 PANTONE Blue 072 C 3.3 PANTONE Green C 0.7 PANTONE Red 032 C 4.2		PANTONE 100 C 0.5 PANTONE Blue 072 C 1.0 PANTONE Green C 0.8 PANTONE Red 032 C 5.2	PANTONE 100 C 5.2 PANTONE Blue 072 C 0.9 PANTONE Green C 0.5 PANTONE Red 032 C 2.1	PANTONE 100 C 5.8 PANTONE Blue 072 C 0.7 PANTONE Green C 0.8 PANTONE Red 032 C 3.6	
	PMS Book 2008km Pantone Guides	PANTONE 100 C 2.2 PANTONE Blue 072 C 3.5 PANTONE Green C 0.5 PANTONE Red 032 C 5.2	PANTONE 100 C 0.9 PANTONE Blue 072 C 2.8 PANTONE Green C 0.9 PANTONE Red 032 C 0.7	PANTONE 100 C 2.3 PANTONE Blue 072 C 3.0 PANTONE Green C 0.2 PANTONE Red 032 C 1.0	PANTONE 100 C 0.5 PANTONE Blue 072 C 1.0 PANTONE Green C 0.8 PANTONE Red 032 C 5.2		PANTONE 100 C 5.7 PANTONE Blue 072 C 0.6 PANTONE Green C 1.1 PANTONE Red 032 C 3.5	PANTONE 100 C 6.2 PANTONE Blue 072 C 1.4 PANTONE Green C 1.0 PANTONE Red 032 C 2.5	Ch

PMS Books compared over 30 years (perfect condition)

ChromaChecker Corp

Limitations of PMS/Printed Samples-30 year

ΔE 2000	Pantone Guides PMS Book 1987	Pantone Guides PMS Book 1992	Pantone Guides PMS Book 1995	Pantone Guides PMS Book 2005	Pantone Guides PMS Book 2008km	Pantone Guides PMS Book 2013_Plus	Pantone Guides PMS Book 2017_Plus1	
PMS Book 1987 Pantone Guides	C	PANTONE 100 C 1.5 PANTONE Blue 072 C 5.2 PANTONE Green C 0.7 PANTONE Red 032 C 5.9	PANTONE 100 C 1.6 PANTONE Blue 072 C 5.4 PANTONE Green C 0.5 PANTONE Red 032 C 6.2	PANTONE 100 C 1.9 PANTONE Blue 072 C 4.2 PANTONE Green C 0.4 PANTONE Red 032 C 10.4	PANTONE 100 C 2.2 PANTONE Blue 072 C 3.5 PANTONE Green C 0.5 PANTONE Red 032 C 5.2	PANTONE 100 C 4.5 PANTONE Blue 072 C 3.6 PANTONE Green C 0.9 PANTONE Red 032 C 8.6	PANTONE 100 C 5.2 PANTONE Blue 072 C 4.2 PANTONE Green C 1.0 PANTONE Red 032 C 7.4)
PMS Book 1992 Pantone Guides	PANTONE 100 C 1.5 PANTONE Blue 072 C 52 PANTONE Green C 0.7 PANTONE Kee U32 C 5.9		PANTONE 100 C 1.4 PANTONE Blue 072 C 0.4 PANTONE Green C 1.0 PANTONE Red 032 C 0.3	PANTONE 100 C 0.4 PANTONE Blue 072 C 32 PANTONE Green C 1.0 PANTONE Red 032 C 4.5	PANTONE 100 C 0.9 PANTONE Blue 072 C 2.8 PANTONE Green C 0.9 PANTONE Ked 032 C 0.7	PANTONE 100 C 4.9 PANTONE Blue 072 C 2.9 PANTONE Green C 1.5 PANTONE Red 032 C 2.9	PANTONE 100 C 5.5 PANTONE Blue 072 C 35 PANTONE Green C 1.6 PANTONE Red 032 C 2.0)
PMS Book 1995 Pantone Guides	PANTONE 100 C 1.6 PANTONE Blue 072 C 5.4 PANTONE Green C 0.5 PANTONE Red 032 C 6.2	PANTONE 100 C 1.4 PANTONE Blue 072 C 0.4 PANTONE Green C 1.0 PANTONE Red 032 C 0.3		PANTONE 100 C 1.8 PANTONE Blue 072 C 3.3 PANTONE Green C 0.7 PANTONE Red 032 C 4.2	PANTONE 100 C 2.3 PANTONE Blue 072 C 3.0 PANTONE Green C 0.2 PANTONE Red 032 C 1.0	PANTONE 100 C 3.5 PANTONE Blue 072 C 3.0 PANTONE Green C 1.0 PANTONE Red 032 C 2.6	PANTONE 100 C 4.1 PANTONE Blue 072 C 3.5 PANTONE Green C 0.8 PANTONE Red 032 C 1.9	>
PMS Book 2005 Pantone Guides	PANTONE 100 C 1.9 PANTONE Blue 072 C 2 PANTONE Green C 0.4 PANTONE Red 032 C 10.4	PANTONE 100 C 0.4 PANTONE Blue 072 C 32 PANTONE Green C 1.0 PANTONE Red 032 C 4.5	PANTONE 100 C 1.8 PANTONE Blue 072 C 23 PANTONE Green C 0.7 PANTONE Red 032 C 4.2		PANTONE 100 C 0.5 PANTONE Blue 072 C 10 PANTONE Green C 0.8 PANTONE Red 032 C 5.2	PANTONE 100 C 5.2 PANTONE Blue 072 C 0.9 PANTONE Green C 0.5 PANTONE Red 032 C 2.1	PANTONE 100 C 5.8 PANTONE Blue 072 C 0.7 PANTONE Green C 0.8 PANTONE Red 032 C 3.6	>
PMS Book 2008km Pantone Guides	PANTONE 100 C 2.2 PANTONE Blue 072 C 3.5 PANTONE Green C 0.5 PANTONE Red 032 C 5.2	PANTONE 100 C 0.9 PANTONE Blue 072 C 2.8 PANTONE Green C 0.9 PANTONE Red 032 C 0.7	PANTONE 100 C 2.3 PANTONE Blue 072 C 3.0 PANTONE Green C 0.2 PANTONE Red 032 C 1.0	PANTONE 100 C 0.5 PANTONE Blue 072 C 1.0 PANTONE Green C 0.8 PANTONE Red 032 C 5.2		PANTONE 100 C 5.7 PANTONE Blue 072 C 0.6 PANTONE Green C 1.1 PANTONE Red 032 C 3.5	PANTONE 100 C 6.2 PANTONE Blue 072 C 1.4 PANTONE Green C 1.0 PANTONE Red 032 C 2.5) Chro

ChromaChecker Corp

Limitations of PMS/Printed Samples- Same Yr

Actual Comparison:

Printer: Formulation Guide

Customers- PMS Bridge

• Differences w/in $<1\Delta E$

Between 1-5 ΔΕ?????

brand new 2018, batch, same Books compared PMS

Limitation with Library in CIE Lab Space

Effect of Illumination Not Quantifiable

Color Inconstancy: Lighting illuminates colors differently

	А	В	с	D50	D55	D60	D65	D75	E	F2	F7	F11	R-12- Smart_Led	MB_Led
L	41.30	45.63	47.32	45.99	46.54	47.01	47.40	48.03	46.23	41.54	46.48	42.62	41.44	46.29
	-35.26	-26.04	-19.31	-27.43	-25.25	-23.34	-21.68	-19.00	-22.96	-20.67	-21.88	-25.97	-18.53	-7.00
	-44.66	-37.28	-34.32	-36.63	-35.59	-34.70	-33.95	-32.74	-35.47	-44.80	-36.17	-43.55	-44.71	-38.55
sRGB														
Ref.														
CII	8.06	2.63	1.20	2.81	1.77	0.83	0.00	1.39	1.34	6.95	1.25	5.72	7.32	8.50

Assess affect of suppliers light booth on brand colors

EF Lighting E-Factor

		Brand Color F	Palette		Capture - X-Rite i1 Pro 2 sn. 1000307 - 2019-08-28 10:27					D50			45
	ΔE2000	∆E _{ab}	۵C	ΔН		L*	a*	b*	L*	a*	b*	ΔLab	Ar00
FACTOR	5.48				42.63	67.97	45.34	47.30	69.09	53.36	6.22	5.48	
May	5.48	6.22	5 50	6 12		39.56	-34.57	25.56	38.57	-35.50	24.11	1.40	1.25
95%	5.48	6.22	5.59	6.12		76.05	60.81	103.81	79.58	57.18	109.89	5.16	3.86
Mean	2.58	3.01	2.18	3.59		94.64	-17.63	118.31	94.94	-14.85	119.34	1.29	1.30
Std. dev.	2.00	2.48	2.32	2.26		75.80	-1.90	62.63	76.38	-0.55	63.71	0.99	1.00

Benefits of Library in CxF X4 Complete

Accurate Simulation:

Visual and numeric value for all tints

Visual and numeric value for all spot overprints

Visual and numeric value for effect of lighting on color Ighting E-Factor

	WideGamutAudit			Area 5					AE .	A.E		
	ΔE2000	ΔE _{ab}	ΔC	Δн	L*	a*		L*				AC00
FACTOR	FACTOR 6.86			17.25	58.97	-80.83	17.71	44.32	-77.81	5.84	6.49	
May	7 25 6 49 13 18 10 65		54.84	73.82	51.22	57.36	72.85	58.09	4.45	3.88		
95%	6.86	5.84	9.85	10.22	21.12	42.31	-71.76	21.34	30.31	-70.12	5.48	6.86

© Copyright 2025 ChromaChecker Corp

How to Make CxF/X4 Brand Library

Use CxF/X4 Template with your Suppliers

- Spectral solid value using CxF format
 - No ability define tints or overprinting with another color
- Spectral solid and tints values using CxF/X4 format
 - Accurate definition of solids, tint, and overprint value with another spot or process color
 - This is the optimum format for Brand Color Definitions

Options for Spot/Brand Color Reference

Road Map to Analytic Based Print Manufacturing

PMS Chip PMS Name Custom Name Custom Name Print Sample (Lab/CxF) (Lab/CxF) Spectral/Tints CxF/X4

© Copyright 2025 ChromaChecker Corp

2. Delta What??? (Δ)

How to Define Color Difference

- Know the Reference- How close is close enough?
- 2 Rings, 4 Rings, 6 Rings?
- More Rings, bigger difference
- How to Quantify with Numbers?

2. Delta What??? (Δ)

What Type of Color Match?

Match specific colors: Spot, brand colors

Match between pages and or images: Process Color

How Close is Close Enough- to Sell Print?

How different is too different for Customer?

Actual printed sample from multiple suppliers...

© Copyright 2020 ChromaChecker Corp

How to Quantify Color Differences

What Type of Color Match?

- Match for individual colors: Brand/Spot Color
 - ΔE (delta E) quantifies single color differences
 - Bigger the number, bigger the difference
- Match between pages or images: Many Colors, Pages
 - E-Factor (EF)- quantifies process color differences
 - Type of ΔE (CRF at 95th percentile)
 - Think ΔE for process colors, same relative difference

Quantify Color Differences

What Type of Color Match?

Match specific colors: Process Control (C,M,Y,K), Spot

Match between pages and or images: Process Color

What is E-Factor: ΔΕ00 CRF at 95th Percentile

Compare Measurements from 2 Prints

Example with Idealliance Control Wedge ISO12647-7 (2013)

Color Aim/Reference: GRACoL2013

Actual Printing Condition: "Large Format"

What is E-Factor

Many software programs support today...

1. Calculate $\Delta E00$ difference for each patch

GRACoL2013 vs "Large Format"

2. Reorder patches from the smallest to largest ΔE

© Copyright 2020 ChromaChecker Corp

Metric required for G7 Color Space

95% Chance of Colors being within Expectations

3. Calculate 95th percentile (95% worst match of patches)

95% of reordered patches are below the ΔE value (12.5ΔE00)

Defining Color Salability (Acceptability):

Research Shows

- ΔE and E-Factor 2-3 almost universally accepted
 - Spot/brand color match
 - Image/page color match
- ΔE and E-Factor 8+ almost universally unacceptable
- AE and E-Factor between 3-8- depends on person

Enter Actual Lab values for your Colors

Preview actual differences

- 3M Red- Entered Lab values
- Spot Color Exercise
- Choose Different delta E formulas
- Compare across hue angles
- Use to determine Acceptability
- Show numbers show the Δa and Δb and ΔE

: 45.74 a: 67.74 b*: 46.81

?	Requested: Actual:	ΔE 3.00 2.05	L* 45.74 47.15	a* 77.07 73.34	b* 46.81 48.09
2	Requested: Actual:	ΔE 3.00 3.78	L* 45.74 47.24	a* 77.68 73.25	b* 56.75 57.57
\odot	Requested: Actual:	ΔE 3.00 3.00	L* 45.74 45.69	a* 67.74 67.59	b* 53.73 53.65
2	Requested:	ΔE 3.00	L* 45.74	a* 63.66	b* 50.89

Visualize All ΔE variations: Seeing Believing

Use Variator to See Result for each Color

Shows all variations of any ΔE in every direction

© Copyright 2025 ChromaChecker Corp
Customize Tolerance add additional metrics

Customize Tolerance

- Use ΔE and add Δh maximum
- Every color can have different metrics

BBYDkGray			
Palette: Best Buy Illuminant: D50 Observer: 2 d	egree		
Edit sample			
Name and description	Tolerances		CxF/X-4 Tints
Sample name	≭ △E 2000 M0 / D50 / 2 degree	Add new 🔿	
BBYDkGray	ΔE = 2.0 kL = 1 kC = 1 kH = 1		
Calculation settings	≭ ∆L*C*H* M0 / D50 / 2 degree		
Density wavelength	∆H* = 2.5		
	SAVE		

Customize Tolerance Visually, Define digitally

ΔE (00) differences are non uniform

- Different colors render differently in different hue angles
- Visually use ΔL , Δa and Δb to change relative difference
- Document the delta differences
- Addresses the non linearity of ΔE as tolerance metric

Customize Tolerances based Visual Acceptance

Snowflake determine Acceptable Tolerances

Compare ΔL, Δa, Δb

© Copyright 2025 ChromaChecker Corp

Specification for Brand/Spot Tolerancing

Road Map to Analytic Based Print Manufacturing

Page (Process) Color Differences...

Which one is the Most Correct- Closest?

Actual printed sample from multiple suppliers...

© Copyright 2020 ChromaChecker Corp

Which GRACoL2006 or 2013?

Visual Difference Between the Two...

They are Different...

GRACoL2006 GRACoL2013

How different is too different for Customer?

How different from the Reference (GRACoL)?

How different is too different for Customer?

How different from the Reference (GRACoL)?

How different is too different for Customer?

Actual printed sample from multiple suppliers...

How different is too different for Customer?

Score Cards do not communicate Visual Difference well

What about Score Carding Programs

Purpose of Score:

- Assess print is within customer expectations
- Assess how close printer is to reference
- Assess how close printer is to itself over time
- Assess how close two different printers are to one another

What about Score Carding Programs

Purpose of Score:

- Assess print is within customer expectations
- Assess how close printer is to reference
- Assess how close printer is to itself over time
- Assess how close two different printers are to one another

PC Score Card

K

X

Process Control Score Cards- Old Way- 🗶

- Score doesn't relate to Customer Expectations
 - ♦ 85% Score doesn't relate to Expectations...
- Score doesn't relate to how close two prints are to one another
 - Week to week from same vendor, or between two vendors

Specification for Image/Page Tolerancing

Road Map to Analytic Based Print Manufacturing

Understand... Tighter the Tolerance- Harder

Exponentially Harder to Achieve- More \$\$\$

Spot Tolerances

© Copyright 2025 ChromaChecker Corp

3. Output Device Capabilities?

Print Device Production Capabilities

- Not just process control (ensuring CMYK and G7 gray is OK)
- Sum of all variables: print device, consumables, operator
- Manufacturer's don't publish this number (mileage varies)

Defining Method to Characterize Output

Depending upon Process, and Reference

- Create Tone Curve to accommodate device condition
 - E-Factor= 5-6
- Create an ICC Profile to accommodate device condition
 - E-Factor= 3-5
- ICC Device links with ink savings

• E-Factor= 2-4

Then Determine if Tolerance is Possible...

Depending upon process, may not maintain

- True spot color with custom ink formulation for substrate
- Spot color simulation on digital device
 - Using CMYK builds to simulate the desired color

File list:

Measurement	Created	×	У	L*	a*	b*	dE ₀₀	*/ *	
CocaCola Oryginal-20191216150342.cxf	2019-12-16 21:03	1792	359	45.37	68.02	49.72	0.4	*	Q,
CocaCola Oryginal-20191216150342.cxf	2019-12-16 21:03	1670	359	45.27	68.13	49.80	0.5	*	Q,
CocaCola Oryginal-20191216150342.cxf	2019-12-16 21:03	1604	359	46.48	65.26	43.01	2.7	×	٩,
CocaCola Oryginal-20191216150342.cxf	2019-12-16 21:03	1560	565	44.83	68.87	52.04	1.1	~	Q,
CocaCola Oryginal-20191216150342.cxf	2019-12-16 21:03	1483	577	44.92	68.42	50.76	0.8	~	٩,
CocaCola Oryginal-20191216150342.cxf	2019-12-16 21:03	1340	632	44.85	68.68	51.27	0.9	~	٩,
CocaCola Oryginal-20191216150342.cxf	2019-12-16 21:03	1208	632	45.07	68.86	51.39	0.7	*	Q,
CocaCola Oryginal-20191216150342.cxf	2019-12-16 21:03	894	632	44.69	68.97	52.40	1.3	*	Q,

© Copyright 2025 ChromaChecker Corp

Benchmarking Printing Devices

Over 1 Million measurements- published report

- Benchmark procedures to audit your devices- free software
- Digital press, large format, flexo, offset
 - Gamut Size, Consistency, Accuracy, Resolution

Benchmark #1	Gamut S	Size: I	Result
♦Fuji J-Press*	558,700	75%	
 Kodak Prosper 	515,200	74%	
 KM1 Press* 	513,900	76%	
 Konica Minolta KM1 	512,900	76%	
 Digital Press NEE 	504,100	71%	
 Digital Press NI 	459,400	70%	
 Indigo 10000* 	451,100	66%	
 Indigo 12000* 	450,500	66%	
 Digital Press O 	445,300	68%	
Indigo WS6600*	420,900	63%	
◆lgen 6 Press*	401,300	65%	
 Digital Press N 	351,900	57%	
 Kodak <u>Nexpress</u>* 	350,700	57%	

Benchmark #2	. Varia	atio	n: Re	sult	S
Printer	With/i	n Betv	veen	E-Fa	ctor M
♦Indigo 12000*	1.0	Р	1.0	Р	1.1
 Domino press 	1.0	Р	1.0	Р	1.1
♦Fuji J-Press*	1.2	Р	1.1	Р	1.1
KM1 Press*	1.3	Р	2.0	Р	1.6
Kodak <u>Nexpress</u> *	1.2	Ρ	1.8	F	2.9
 Konica Minolta KM1 	1.4	Ρ	1.2	F	1.1
 Digital Press O 	2.3	F	3.2	F	2.2
♦Igen 6 Press*	2.5	Ρ	2.2	Р	2.8
 Kodak Prosper 	3.0	F	1.4	F	3.6
 Digital Press N 	5.1	F	5.5	F	4.7
♦Indigo 6600 *	.9	Ρ	Incom	nplete	3.0
♦Indigo 6000 *	1.8	F			

Color Conformance-More than Process Control

Is Color Close Enough?

- Define Production Capability of all Devices
- Define if devices are within Customer Expectations

Assessing all Output Devices

- Centralized, Accountable Color Control
- Allows Each Operator to be Responsible
- Notifications sent if Device not maintained

System Overview

PRINTER COLOR QUALIFYING PROGRAM	8	@		
Track name	@	Tools	-	
Printer A	145 files 3.0	♀ *	GRACoL2006_Coated1v2	0.9 🖌 📃 🍋
Printer B_iO	44 files 🕒 3.0	♀ *	GRACoL2006_Coated1v2	1.3 🗸 📃 🍋
Printer B_iO_Harm	11 files 🕒 3.0	\	GRACoL2013_CRPC6	1.2 🗸 📃 🍋
Printer B_eXact	13 files 🕒 3.0	♀ 然	GRACoL2006_Coated1v2	3.3 🗸 📃 🍋
Proofer	16 files 🕒 2.0	♀ *	GRACoL2006_Coated1v2	4.9 🗙 📰 🍋

4. What Variables affect assessment

All variables have a cumulative affect

- Difference in paper manufacturing
- Difference between measurement backing
- Differences between measurement devices
- Differences between lighting

Paper Manufacturing

Many Variables, OBA, Water, Fiber

- Paper variation in manufacturing- Oregon vs. Wisconsin
- Proofing Paper tolerances- Max 1Δ in L* or a* or b*
- Photo Paper tolerances- Max 2∆ in L* or a* or b*
- Track Paper independent of Ink

Measurement Backing Differences

Actual Data- Changing backing behind measure

- Measuring same target with same accurate instrument
- Measure on ISO White, ISO Black, and actual paper
- Differences are greater than 2 E-Factor...

Press Side Measurement= Black

Proofing Measurement= White

ISO 13655 L* = 95 a* = .9 b* = 1.3

Measurement Device Differences: Six Sigma

Instrument Gauge Factor

- Every Manufacturing Industry using this metric, except
- Defines what percentage of Production tolerance can be used up due to instrument disagreement (20%-33%)
- Means, if tolerance is 2ΔE, need to give up .4-.66ΔE to within instrument variation
- Delta E stacks on top, two or more instruments total difference be within .4 Δ E (stay within 20% of 2 Δ E)

How Measurement Device Influences Result

No two measurement devices measure same...

How Measurement Device Influences Result

No two measurement devices measure same...

© Copyright 2020 ChromaChecker Corp

Instrument Needs to be Considered!

Different Instruments Measuring Same Colors:

Same Brand Color bar measured with i1, Exact, SpectroDens

Primaries and Spots

Understand Supplier Differences

Different Printers attempting to Print desired colors

- Each Printer could be within 2ΔE of Reference
- But be up to 4ΔE to each other- different inks/toners
- Realistic Tolerances

Primaries and Spots

Understand Instrument Differences

Same Color bar measured with 3 instruments

- Comparison between
 3 measurement devices
- X-Rite Exact vs i1;
 Peak ΔE= 6.4: White
- Tolerance is 2ΔE?
- Fails due to Instrument Differences

Capture - X-Rite i1 Pro 2 sn. 1 000307 - 2019-04-09 12:05:0 ΔE 2000 2019-04-09 12:05:08 BBY PacSalesBlue 1.9 BBY PacSalesRed 1.3 BBY_GC_CoolGray9 4.1 BBY_GC_CoolGray6 3.0 BBY_GC_CoolGray3 3.4 BBY_GS_Orange 2.0 BBYValueRed 1.2 BBYDkGrav 3.1 2019-04-03 10:48:23 BBY_MagnoliaRed 1.2 Capture - MSP X-Rite eXact s BBY_MyBBYBlue 1.7 n. 032095 - 2019-04-03 10:4 8:23 BBYDkBlue 0.5 BBYLtBlue 0.4 BBYDkYellow 1.6 BBYLtGrav 4.6 BBYTechWhite 6.4 BBYTechBlack 2.3 BBYTechYellow 1.6 BBYHumanBlue 1.5

Primaries and Spots

Two Instrument Strategies: Process vs Spot

Process Color Instrument Strategy

- Harmonize Instruments to one another- Compensate on fly
- Build profiles for each instrument, compensate measurements

	X-Rite i1 iSis 2 XL ISIS_M0	X-Rite i1 Pro 1 Autogenerated baseline 2018-03 -01 09:06:44	X-Rite i1 Pro 2 I1_SN307_M0	X-Rite SN317 eXact Exact_SN317_M0
X-Rite i1 iSis 2 XL ISIS_M0		 EF Workflow = 6.20 H = 1.50 EF Instrument = 1.24 H = 0.30 Harmonizer = 313% Max = 1.29 Avg. = 0.67 	 EF Workflow = 6.25 H = 1.35 EF Instrument = 1.25 H = 0.27 Harmonizer = 363% Max = 1.41 Avg. = 0.70 	 EF Workflow = 5.60 H = 1.85 EF Instrument = 1.12 H = 0.37 Harmonizer = 203% Max = 1.26 Avg. = 0.64

- Without Harmonization- Mix instruments require E-Factor= 6
- With Harmonization- Mix instruments enables E-Factor= 1.8

Two Instrument Strategies: Process vs Spot

Spot/Brand Color Instrument Strategy

- Resign that every instrument is different
- Track same color product with different instruments/conditions

Gatorade Frost		Reference Value Last Mea	asurement (×>>	\bigcirc
Label Transparent 60	*	L=92 a=0 b=3 2019	9-09-30 16:28	1.5	\odot	0
Orange overprinted on Red 24	*	L=51 a=64 b=64 2019	9-09-30 16:28	0.8	\odot	0
Printed Black 41	*				\otimes	
Printed Cyan 22	*	L=68 a=-31 b=-31 2019	9-09-30 16:28	1.1	\odot	0
REF - M1/2 9	*	L=68 a=-31 b=-31 2019	9-09-30 16:28	1.1	\odot	0
TR - M1/2 13	*	L=63 a=-16 b=-18 2019	9-09-30 15:09	1.4	\odot	0

- Accommodates mixing Spherical measurements and 45/0
- Communicate references to supply chain

Instrument Tracking and Compensation

Road Map to Analytics Based Print Manufacturing

Visual Review	Send to Factory	Vendor tools	Harmonize to Master
 no knowledge required expensive and time-consuming personal supervision dependent on the person lighting conditions related uncontrolled metamerism 	 numerically expressed color differences expensive and time-consuming personal supervision uncontrolled metamerism initial swatch-book inaccuracy 	 numerically expressed color differences stable color definition exchangable color definition the possibility of remote control 	 numerically expressed color differences spot colors, SCTV, CxF/X-4 compliant exchangable color definition lighting condition
VISUAL Personal perception-based comparision to physical standard	BASIC INSTRUMENTAL Instrument-based comparision to physical standard	COLORIMETRIC AIM Instrument-based comparision to colorimetric standard	SPECTRAL AIM Instrument-based comparision to spectral standard
VISUAL ASSESSMENT •	COMPARATIVE COLOR ME	ADVANCE	D COLOR CONFORMANCE
SUBJECTIVE PER	SONAL-BASED SMENT	METRIC	GEMEEN SCIENTIFIC
GRAPHIC ARTS		PRIM	NT MANUFACTURING

Light Booth Differences

*Two most used light booths on market*Press has one, Prepress has other- Mismatches

Just Normlicht LED vs GTI Proofing

ecker Corp

Light Booths- Flourescent bulbs change

*Quantify How Close to One Another*Multiple Light Booths, normal variations

Spectral comparision

Light Booths

Quantify How Close to D50, and to One Another

- Two light booths that pass ISO doesn't guarantee match
- Never mind two different vendors- same vendor!!!
 - T8 Bulbs versus T12 bulbs- and different ages > 2 IF
- Trying to match E-9900/Gracol06 with 9000/Gracol2013
- Color server, manual corrections: very close- customer rejected- Due to Light booth!!!
- Changed ballast to support same tube, bought same batch, set schedule for change out

Light Booth Tracking and Compensation

Road Map to Analytics Based Print Manufacturing

Visual Review	Once year Audit	Measure Monthly	Same Batch, Manufacturer
 no knowledge required expensive and time-consuming personal supervision dependent on the person lighting conditions related uncontrolled metamerism 	 numerically expressed color differences expensive and time-consuming personal supervision uncontrolled metamerism initial swatch-book inaccuracy 	 numerically expressed color differences stable color definition exchangable color definition the possibility of remote control 	 numerically expressed color differences spot colors, SCTV, CxF/X-4 compliant exchangable color definition lighting condition
VISUAL Personal perception-based comparision to physical standard	BASIC INSTRUMENTAL Instrument-based comparision to physical standard	COLORIMETRIC AIM Instrument-based comparision to colorimetric standard	SPECTRAL AIM Instrument-based comparision to spectral standard
		Lab	
VISUAL ASSESSMENT	COMPARATIVE COLOR MI	EASUREMENT • ADVANC	ED COLOR CONFORMANCE
SUBJECTIVE PER	SONAL-BASED GMENT	METRI JU	GEBASED SCIENTIFIC
GRAPHIC ARTS		PRI	NT MANUFACTURING

© Copyright 2020 ChromaChecker Corp
Rules For Engagement

Understand the Ramification of Every Variable

- Need to be Advanced in Every Category
 - Defining References
 - Defining Tolerances
 - Defining Backing
 - Defining Instrumentation- and Harmonization
 - Defining Lighting

Each Variable Stacks on Top of Each Other

Cumulative Process:

Each Workflow Component is tracked using ΔE or E-Factor

Print Manufacturing Salable Number

Road Map to Analytics Based Print Manufacturing

Color Conformance vs. Process Control

Defined tolerances in ΔE, E-Factor will determine:

- What type of process control for given manufacturing
- How often process control is performed
- How tight the process control metrics are
- How tight raw materials have to accountable to
- Proactively assessing all variables, all time
 - Not sending instrument back to factory once/year
- Communicating to Operators, Management, Sales etc.

If You Want any Chance for 2 ΔE/E-Factor

Need to be maximum maturity for every category

- Defining and Communicating Digital References
- Defining and Communicating Intelligent Tolerances
- Defining Print Manufacturing Capability (E-Factor)
- Defining Substrates, and allowing SCCA
- Defining Instrument Backing (ISO 13655-2017)
- Harmonizing Instruments (Compensate for differences)
- Using same light booth/bulbs, tracking bulb age
- Real time tracking and assessment

Thank you for attending!

COLOR20

get the answers here

