ChromaChecker

When to Use Which Instrument 45/0, 0/45, D8, SPIN, SPEX, Spot, Scan, UV, no UV

Presented by: David Hunter

When to Use Which Instrument??

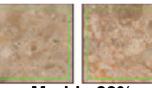
Agenda

- Printing devices are imaging on all types of materials today:
 - Paper, Plastic, Acrylic, Fabrics, Leather, Velour, Metal, Aluminum,
 - Many with different textures, depth, gloss, sheen and weaves
- Each combination influences how eye perceives resultant color
 - Challenge is to measure sample and capture what eye perceives
 - Very challenging, hence industry has provided a lot of options
- This Overview provides methodology to qualify instrument choice
- You will not find this information any where else, we will be reserving this content for ChromaChecker users only

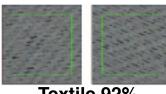
hromaChecker.

© Copyright 2023 ChromaChecker Corp

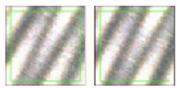
CC Nano Instrument


Unique Instrument: Measures Texture/Appearance

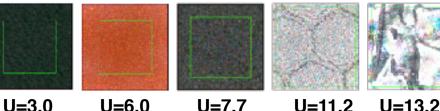
- It is not a Spectrophotometer, but a Colorimeter and Gogliometer
- Color Match for Average and Dominant Color:



Surface Match for texture/pattern



Marble 89%

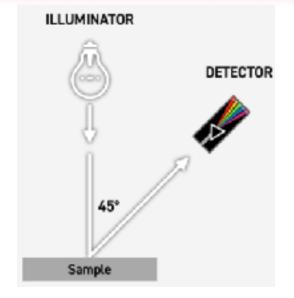

Textile 92%

Aluminum 82%

U=0.6

Instrument Choices: Spectrophotometers

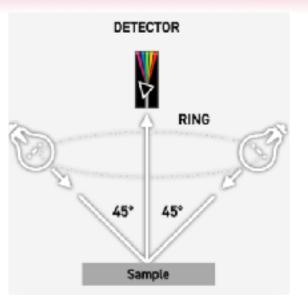
Options for Color Measurement Devices


- Geometry: 45°/0°, 0°/45°, d/0°, d/8° (Sphere), or MultiAngle
- Illumination Methods: Annular Ring, Single/Multiple Points, Diffuse
- Automation: Single, Manual Scan, Auto Scan
- Measurement Modes: M0, M1, M2, M3, SPIN, SPEX with or w/o UV
- Aperture Size related to screen ruling of print quality, patch size

Geometry Instrument Choices: 45°/0°

45°/0° and 0°/45° Application

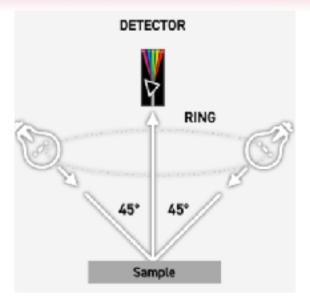
Measuring ink on paper- Flat, regular surface
45°/0° Light is from 45° and receptor is 0°



Geometry Instrument Choices: 45°/0°

45°/0° and 0°/45° Application

- Measuring ink on paper- Flat, regular surface
 - ♦ 45°/0° Light is from 45° and receptor is 0°
 - 0°/45° Light is from 0° and receptor is 45°
 - ♦ 45°/0° Light is Annular

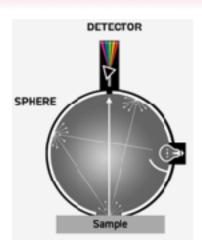

ThromaChecker.

© Copyright 2023 ChromaChecker Corp

Geometry Instrument Choices: 45°/0°

45°/0° and 0°/45° Application

- Measuring ink on paper- Flat, regular surface
 - ♦ 45°/0° Light is from 45° and receptor is 0°
 - 0°/45° Light is from 0° and receptor is 45°
 - ♦ 45°/0° Light is Annular
 - Options may include:
 - M0- Undefined illuminant
 - M1- D50 illuminant with UV
 - M2- D50 illuminant cutting off UV light
 - ◆ M3- Polarizing filter, cuts sheen, requires more light
 - Aperture size variable based on instrument


broma(becker.

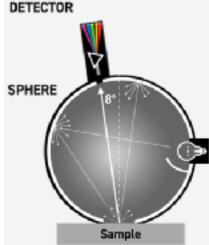
© Copyright 2023 ChromaChecker Corp

Geometry Instrument Choices: d8° Sphere

d/0° Instrument Application- Spectro1

- Measuring uneven surfaces
 - Surface has unpredictable reflection of Light
 - Light reflected around sphere to sensor
 - Two Models, Pro and Regular:

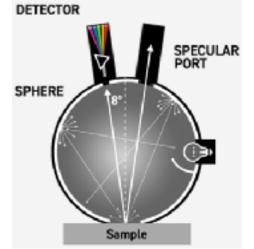
- Specular Included SPIN- surface independent measurement
 - Doesn't consider surface texture or gloss
- Specular Excluded SPEX- surface dependent measurement
 - Considers visual affect of surface and gloss
- Aperture Size options


Geometry Instrument Choices: d8° Sphere

d/8° Sphere Application

- Measuring uneven surfaces
 - Surface has unpredictable reflection of Light
 - Light reflected around sphere to sensor
 - Options:

Doesn't consider surface texture or gloss



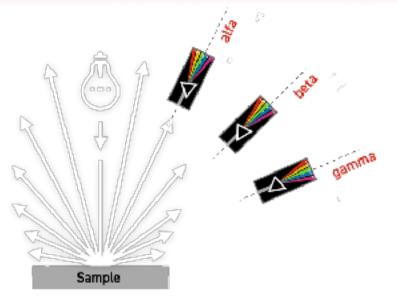
Geometry Instrument Choices: d8° Sphere

d/8° Sphere Application

- Measuring uneven surfaces
 - Surface has unpredictable reflection of Light
 - Light reflected around sphere to sensor
 - Options:

Specular Included SPIN- surface independent measurement

Doesn't consider surface texture or gloss


- Specular Excluded SPEX- surface dependent measurement
 - Considers visual affect of surface and gloss
- Aperture Size options

Geometry Instrument Choices: Multi-Angle

Multi-Angle Application

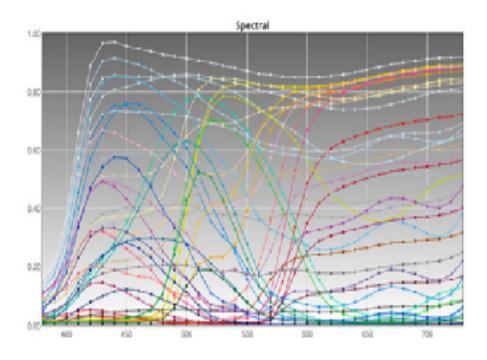
- Measuring Unpredictable surfaces
 - Metallic flakes, lenses
 - One Light source, six angles
 - Very proprietary
 - Very expensive
 - Very unique, typically automotive paints

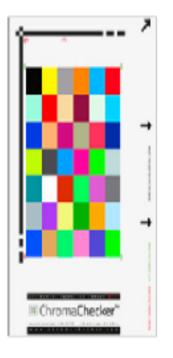
General Rules

Aperture Size

Size versus line screen

Aperture Specifications


Aperture Size	Measurement area size	Opening in target window**	Opening in scan chassis target window	Screening Range
1.5mm	1.5mm	3.5mm	4.0mm	175 lines/inch or 69 lines/cm or above
2mm	2.0mm	4.0mm	4.5mm	133 lines/inch or 52 lines/cm or above
4mm	4.0mm	6.0mm	6.5mm	65 lines/inch or 26 lines/cm or above
5mm	6.0mm	8.0mm	8.5mm	



General Rules- Baseline Instrument

Instrument Inspector

- Know instrument is consistent and accurate to factory specifications
- Use CC Capture with T42 target and measure at least 5 times
- Ensure the E-Factor is within your Expectations for Color Matching

Instruments Measuring Fluorescents Differently

Check for Optical Brighteners or Fluorescents

Measuring same sample with different instruments

Instrument	OBA Index	Fluorescence Index	M1-M2 Spectral Δ @ 430 nm	M1-M2 ДЕ ₀₀
	Index	Index	@ 450 nm	~~0 0
il Pro 3	8.8	9.5	0.24@ 430 nm	8.71
il Pro 2	7.2	7.4	0.21@ 430 nm	7.24
eXact M1 Part 2 export on	5.8	5.B	0.16 @ 430 nm	5.72
eXact M1 Part 2 export off	6.2	5.9	0.15 @ 430 nm	6.08
Techkon SpectroDens	7.9	7.4	0.16 @ 440 nmn	7.25

 Much of difference due to different algorithms attempting to interpolate actual fluorescent sample.

General Rules Related to Sample

Check for Optical Brighteners or Fluorescents

- How to Check
- If Material is flat and consistent measure with 45°/0°
 - Use Variation and measure in all M Conditions available
- If substrate is contoured or uneven- measure with Spherical
 - Measure in all four conditions at same time,
 - SPEX, SPEX w/UV, SPIN, SPIN w/UV
 - Compare the difference to determine if fluorescence in sample

General Rules

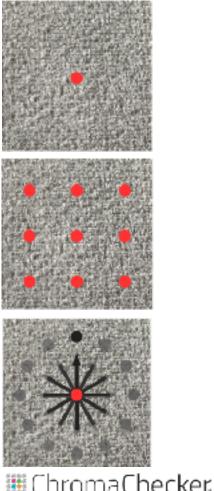
Measurement Mode- 45°/0° Instruments

- Ideally measure M1 condition the majority of time
- If the "b" value in the Lab number is more than -8, may consider M2
- If failing Step 1 attempt to measure with a different M condition
- If using i1Pro3Plus, you can try Polarized mode (M3)

- Flat, matte, uniform color- Ink, Paint on flat even surface
 - Use 45°/0° Instrument, check for fluorescence

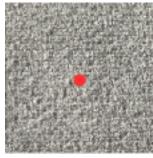
- Flat, matte, uniform color- Ink, Paint on flat even surface
 - Use 45°/0° Instrument, check for fluorescence
- Flat, High Gloss
- Textured surfaces, shadows, roughness- Fabrics, natural fibers
- Offset surfaces, multi-layered depth- Acrylic, print bottom glass
 - Test 45°/0° if fail, test Spherical

- Flat, matte, uniform color- Ink, Paint on flat even surface
 - Use 45°/0° Instrument, check for fluorescence
- Flat, High Gloss
- Textured surfaces, shadows, roughness- Fabrics, natural fibers
- Offset surfaces, multi-layered depth- Acrylic, print bottom glass
 - ♦ Test 45°/0° if fail, test Spherical
- Mirrored materials- Silver, Gold, Foil, Aluminum, Metal
 - Test Spherical



- Flat, matte, uniform color- Ink, Paint on flat even surface
 - Use 45°/0° Instrument, check for fluorescence
- Flat, High Gloss
- Textured surfaces, shadows, roughness- Fabrics, natural fibers
- Offset surfaces, multi-layered depth- Acrylic, print bottom glass
 - ♦ Test 45°/0° if fail, test Spherical
- Mirrored materials- Silver, Gold, Foil, Aluminum, Metal
 - Test Spherical
- Metallic, Pearl colors
 - Test Spherical if fail test Multi Angle

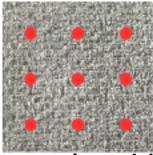
Simple 3 Step Process using CC Capture Variation


- Step 1- Measure the same spot 12-15 times, not moving instrument at all, use software to trigger measurement
- Step 2- Measure 9 different locations on sample offset by at least 0.5"
- Step 3- Measure same spot 12 times rotating instrument around the same spot

© Copyright 2023 ChromaChecker Corp

Simple 3 Step Process using CC Capture Variation

 Step 1- Measure the same spot 12-15 times, not moving instrument at all, use software to trigger measurement



- How to know if measurement fails to measure the sample within expectations?
- Try different options, modes, settings on same instrument
- Try different instruments to see if any can pass, if not- buy new

Simple 3 Step Process using CC Capture Variation

 Step 2- Measure 9 different locations on sample offset by at least 0.5"

How to know if measurement fails to measure the sample within expectations?

Simple 3 Step Process using CC Capture Variation

- Step 3- Measure same spot 12 times rotating instrument around the same spot
- Determine if result fails outside of expectations?

Qualify the Substrates

Understand: make up of Substrate will affect results

- Substrates can have different structures that affect measurement
- Substrates can be uniform when raw, but nonuniform when printed
- Need to qualify both raw and printed substrates
- Show Video of Step 3

Summary

Simple 3 Step Process using CC Capture Variation

- Many variables related to printing on uneven, structured substrate
- This is the beginning of education to understand the process
- We will be adding additional results, applying the three steps
- Understand better when to use geometry/aperture/UV

