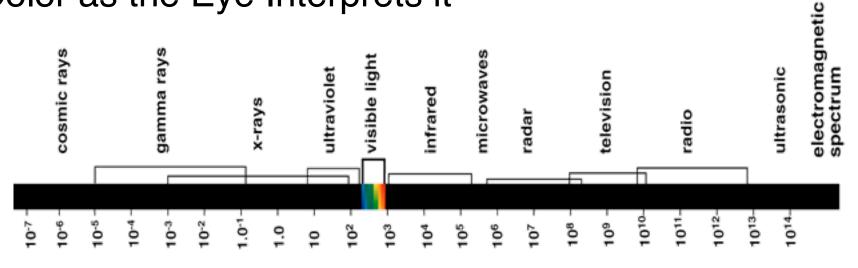


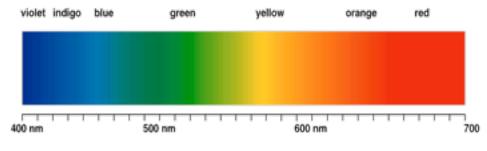
Color Control Fundamentals Color Basics

Presented by: David Hunter

Defining Color Values

Agenda

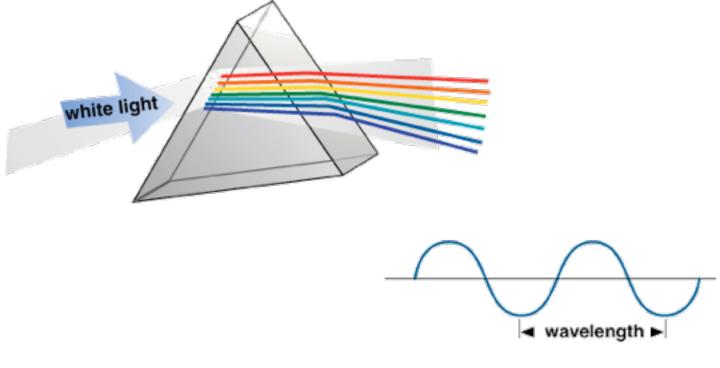

- Color as the Eye Interprets it
- Rendering color value as a number
- Spectral Data
- CIE-Lab
- Mapping to Prints, and known Spots


Defining Color Values

Electromagnetic Spectrum

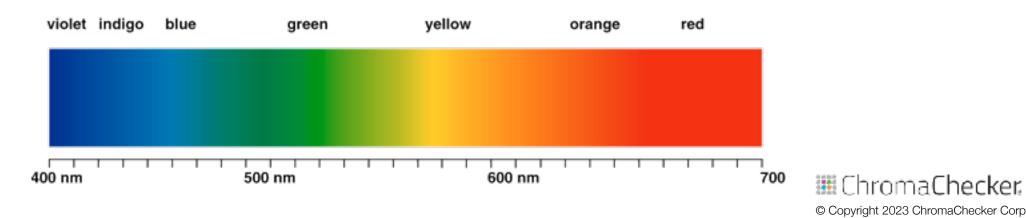
Color as the Eye Interprets it

R•O•Y•G•B•I•V


No Light

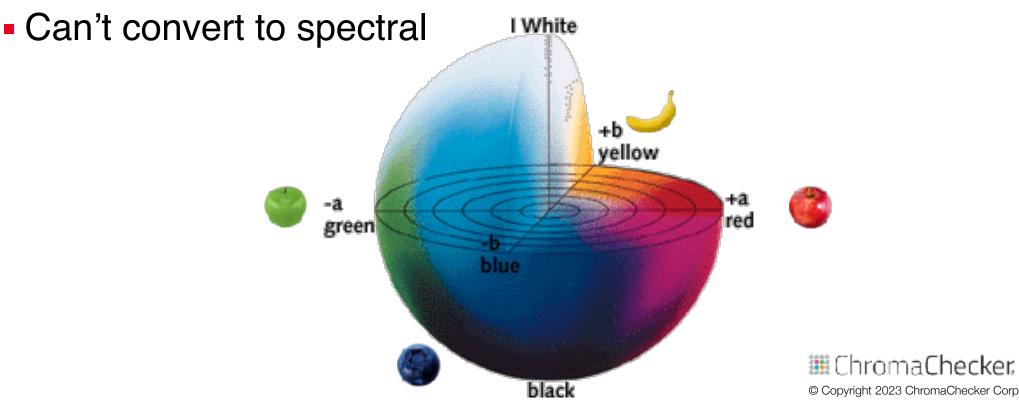
Need Light Source (Illuminant)

Prism


- White Light- Composed of all colors of spectrum
- Black Light?

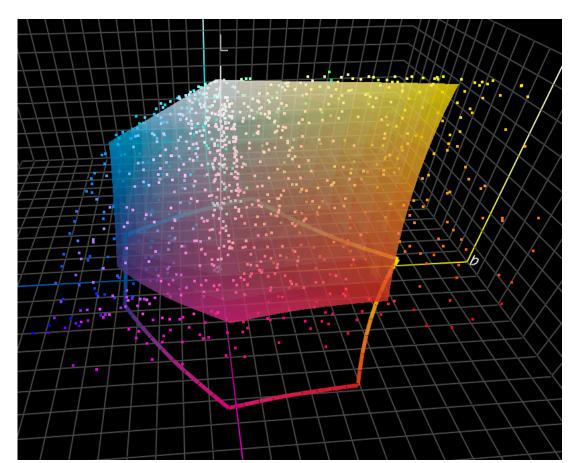
Spectral Definition

One Color


- **380-720 NM**
- 10 NM increments
- 32 numbers represent one color
- Can predict result of new light source
- Easily Convert to CIE-Lab

CIE-Lab Definition

One Color


- 3 numbers, L* lightness, a* red/green axis, b* yellow/blue
- Illuminant dependent- Only good for 1 Light source

Define Printing Gamut and Measured Colors

GRACoL Print Gamut and PMS Colors

• 58% of colors within $2\Delta E(00)$

Summary

Light Affects Color

- Spectral definition is more desired for defining colors
- CIE-Lab is still valuable for editing, correcting colors
- Spectral Prediction for Spots/Tints/Profiles is future

Color Control Fundamentals **5 C's Color Color Control**

Presented by: David Hunter

STEPS TO DEFINING PROCESS DISCIPLINE

How to meet or exceed E-Factor?

5 C's of Color Control

Capture – assess instrumentation capabilities
Calibration – make device consistent to itself & over time
Characterization – define device gamut and create profile
Conversion – map one gamut to another in the workflow
Conformance – verify new results and meet expectations

Definitions

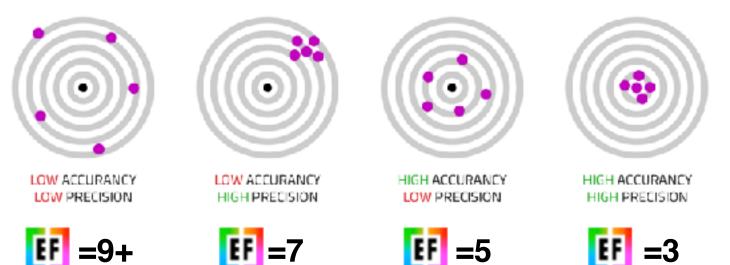
Device Consistency

- Precision
- Process Control- G7
- Shared Visual Appearance

Device Matching

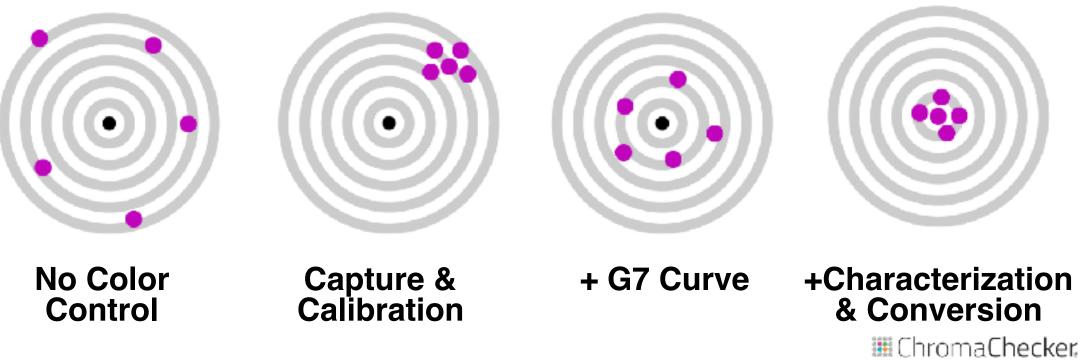
Accuracy

- Color Conformance- EF
- Color Match



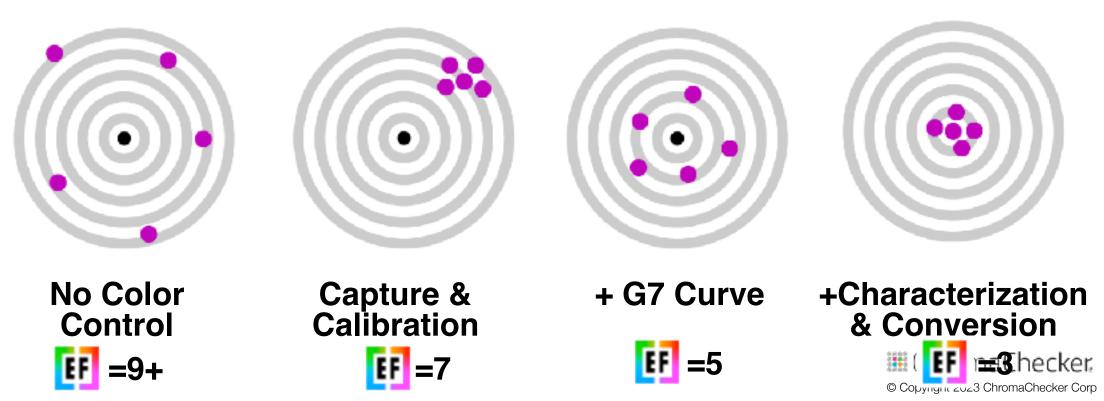
Transition from Graphic Arts to Manufacturing

Taking Raw Materials & Creating Products that Consistently Meet Customer Expectations


 Maximum Color Match Requires- Optimum process control, tighter metrics, optimum color conformance, lower EF

5 C's determine Quality of Color Match

Need Good Components for all 5 C's to have best color


- Precision and Accuracy achieved with all 5
- Might not need all 5 C's depending on your Expectations

5 C's determine Quality of Color Match

Need Good Components for all 5 C's to have best color

- Precision and Accuracy achieved with all 5
- Might not need all 5 C's depending on your Expectations

Color Control Fundamentals

First of the Five C's: Capture

Presented by: David Hunter

STEPS TO DEFINING PROCESS DISCIPLINE

How to meet or exceed E-Factor?

First of the 5 C's of Color Control

Capture — assess instrumentation capabilities

Calibration — make device consistent to itself & over time
 Characterization — define device gamut and create profile
 Conversion — map one gamut to another in the workflow
 Conformance — verify new results and meet expectations

Capture Data with Measurement Instruments

Quantify color with multiple capabilities

Capture- Selecting a Measurement Device

Factors to Consider

- Ease of use- measuring single color? More?
- Level of automation (auto patch/ bar code)
- Substrate material thickness/transparency
- Aperture Size per printed line screen
- Textured material
- Other measurement devices to match

Capture with Manual Measurements

Manually measure one color at a time

Capture with Single Strip Measurements

Measure color bar, patch size dependent on instrument

Calibration (process control) and Conformance applications

Capture with Automated Target Measurements

Automated x, y measuring large targets

- Characterization (ICC Profile) targets
- Predefined locations with i1iO
- Bar code incorporated with target for automatic routing

Capture- Determining Which Device is Required

EF

Considerations based on E-Factor

- Tighter the expectations the more critical the accuracy
- Precision- repeatability/consistency
- Accuracy- in relation to "Master" instrument
- Not always directly related to price

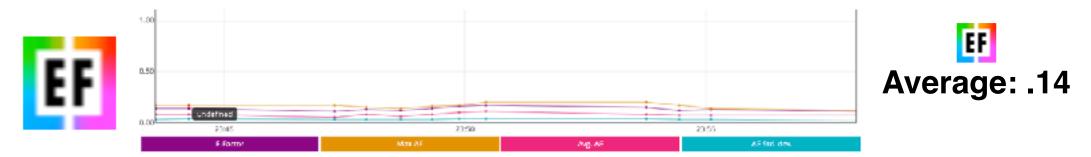
Data from measuring 42 patch target twelve times

Exposes state of "exactness" and "repeatability"

File list:

	Measurement	Created	Baseline	Worst patches	Max. AC	Arg. Al	Ø	1/2	
0	n_xx2_AACGU_14.5d	2017/12/01 11:20:00	Autogenerated baseline 2018-03- 01 09:06:54		0.37	0.15	0.32	~	٩
8	H_X42,4468,13.04	2017-12-01 11:10:00	Autogene valed baseline 2018-03- 01 09:06:044		0.50	0.21	0.54	~	٩,
8	n_XA2_AACGU_12.54	2017/12/01 11:08:00	Autogenerated baseline 2018-03- 01 09:06:55		0.44	0.15	0.36	~	٩
۰	1,342,4468,11.04	2017-12-01 11:03:00	Autogenerated baseline 2018-03- 01 09:06:044		0.53	0.29	0.50	×	٩,
8	COO CONTRACTOR AND A CONTRACTOR	2017-12-01 11:02:00	Autogenerated baseline 2018-03- 01 09:06:04		0.45	0.20	0.34	~	٩,
0	H_X42_A4688_9.64 🙆 🖸 🙆	2017-12-01 11:00:00	Autogenerated baseline 2018/03- 01 05:00:44		0.45	0.20	0.30	*	Q,
0	1,542,4400,5.5d 🔘 🔘 🕲	2017-12-01 10:55:00	Autogenerated baseline 2010-03- 01 09:06:44		0.50	0.15	0.29	~	٩,
0	H_X42_A4668_7.07	2017-12-01 10:57:00	Autogenerated baseline 2018-03- 01 03:00:44		0.33	0.16	0.29	*	٩
8	1, xx2,4x00,5.5d	2017-11-09 11:40:00	Autogenerated baseline 2018-03- 01 09.06/44		0.37	0.16	0.33	~	9

i1Pro1



Discontinued

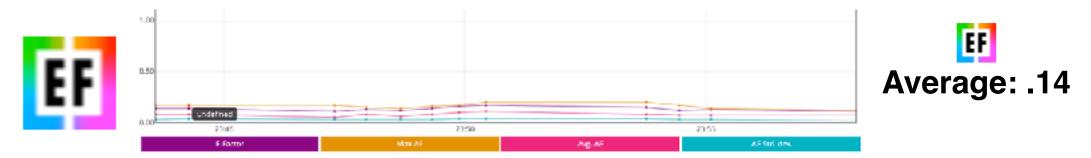
ChromaChecker. © Copyright 2020 ChromaChecker Corp

Data from measuring 42 patch target twelve times

Exposes state of "exactness" and "repeatability"

File list:

	Measurement	Created	Baadine	Worst potches	Max. SE	/ng.6E	Ø	%	
•	PRINTV::/filer_Excor1_2017_09_05_091682/08.01	2017-09-05 23:56:68	H_SN007_M0		6.12	0.07	0.11	~	٩
0	PS NT/Erflier_Depart_2017_09_01_09605500 tot	2017-08-05 23:55:06	IT_\$N\$807_W0		0.14	0.07	0.13	~	٩,
	PRINTWITTING \$2001,2017,09,02,09464527.01	2017-09-05 23:54:27	H_5NR07_M0		6,17	0.07	0.12	*	٩,
8	PS NT/Entline_Separt_2017_09_05_09165856 tot	2017-00-05 22:53:46	IT_\$N007_W0		6.20	0.08	0.15	~	٩,
•	PR NTVsrflar_0x504_2017_09_00_09450820164	2017-09-05 23:50:26	H_5NB07_M0		6.20	0.11	0.17	~	٩
0	PRINTV://filer_5+cor1_2017_09_05_091+9653101	2017-09-05 23:49:53	H_5N007_W0		6.17	0.10	0.16	*	٩
	PS NT/PrtBer_Depart_2017_09_02_09be9s1S1st	2017-08-05 23:45:19	IT_\$NB07_W0		0.16	0.06	0.14	~	С,
	PRINTVERTING_\$4001_22172_09_05_09148840.01	2017-09-05 23:48:40	H_5N807_M0		6.14	0.06	0.12	~	٩
	PRINT/Prifier_Separt_2017_09_03_09bc2x57.txt	2017-00-05 20:47:57	IT_\$N307_W0		0.15	0.06	0.10	~	٩


i1Pro2

Discontinued

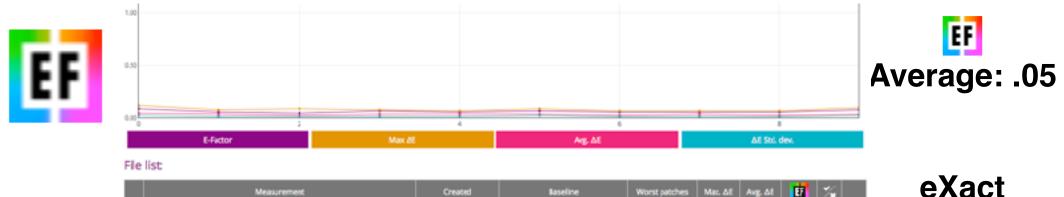
Data from measuring 42 patch target twelve times

Exposes state of "exactness" and "repeatability"

File list:

	Measurement	Created	Baadine	Worst potches	Max. SE	/mg-68	Ø	%	
•	PR NTV::/filer_5+cor1_2017_09_05_091686/08.01	2017-09-05 23:56:68	H_SN007_M0		6.12	0.07	0.11	~	٩
0	PRINT/Petfler_Decort_2017_09_01_09605500 tot	2017-08-05 23:55:06	IT_\$N\$807_W0		0.14	0.00	0.13	~	٩,
	PRINTWITHE \$2001,2317,09,05,09464527.01	2017-09-05 23:54:27	H_5NR07_W0		6,17	0.07	0.12	*	٩,
8	PS NT/Entline_Separt_2017_09_05_09659536 tot	2017-00-05 20:00:46	IT_\$N007_W0		0.20	0.08	0.15	~	٩,
8	PR NTVshiller_0x504_2017_09_00_09460820164	2017-09-05 23:50:26	H_5NB07_M0		6.20	0.11	0.17	~	٩
0	PR NTV:rifier_5+cor1_2017_09_05_091+9653101	2012-09-0523:49:53	H_5NR07_W0		6.17	0.10	0.16	*	٩
	PS NT/PrtBer_Depart_2017_09_02_095e9s1S1xt	2017-09-05 23:45:19	IT_\$NB07_W0		0.1e	0.06	0.14	~	С,
	PH NTVErfler_5x001_2017_09_05_09148840.01	2017-09-05 23:48:40	H_5N807_M0		6.14	0.06	0.12	•	٩,
8	PRINT/Artilier_Separt_2017_09_03_09bs2557.txt	2017-00-05 20:47:57	IT_\$N307_W0		0.15	0.06	0.10	*	٩

i1Pro3



\$1,500

ThromaChecker.

Data from measuring 42 patch target twelve times

Exposes state of "exactness" and "repeatability"

	Measurement	Created	Baseline	Worst patches	Max. AE	Avg, ∆t	Ū.	1/1	
0	P0INTVerifie:_Duport,2017_11_00_20104+64.6x	2017-11-00 23:34:44	Autogenerated baseline 2017-11-08 20:35:11		0.39	0.03	0.07	*	٩
0	PRINTVerifie: Export 2017.11.08.20H3s57.tx	2017-11-08 23:33:57	Autogenerated baseline 2017-11-08 20135/11		036	6.62	0.05	~	٩,
0	PRINTVerifier_Export_2017_11_08_20h32s54.tx	2017-11-08 22:32:54	Autogenerated baseline 2017-11-08 20-3641		0.36	0.03	0.05	*	٩
0	PRINTVerifier_Export,2017_11_08_20182s13.tx	2017-11-08 20:32:13	Autogenerated baseline 2017-11-08 20:35:11		0.36	0.02	0.05	*	٩
0	PRINTVerifier_Export_2017_11_08_20H00s07.tx	2017-11-08 20:30:07	Autogenerated baseline 2017-11-08 20:35:11		0.38	0.03	0.05	*	٩
0	PRINTVerifier_Dxport,2017_11_08_20H21sS8.tx	2017-11-08 20:21:58	Autogenerated baseline 2017-11-08 20:35:11		0.36	0.03	0.05	*	٩
0	PRINTVerifier_Export_2017_11_08_20H0s55.tx	2017-11-08 20:20:55	Autogenerated baseline 2017-11-08 20:35:11		0.37	0.03	0.05	*	٩
0	PRINTVerifier_Dxport,2017_11_08_201e0s07.tx	2017-11-08 20:20:07	Autogenerated beseline 2017-11-08 20:35/1		0.38	0.02	0.04	*	٩
0	PRNTVorifie_Export_2017_11_60_20119u18.tx	2017-11-08 20 19 18	Autogenerated baseline 2017-11-08 20:35:11		0.37	0.03	0.05	*	٩

\$5500

Capture- Is Instrument Precise Enough?

E-Factor- Expectations

Instrument Gauge Factor

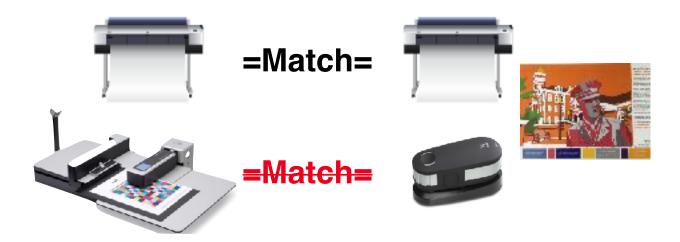
- Every Manufacturing Industry has IGF
- ChromaChecker introduces to Print Industry
- Workflow Tolerance:
 - of precision + cross instrument variation
 - allocate down to 20% to instrument variation

Capture- Interpreting the Data

"Stacking" Effect of Multiple Devices

- Multiple instruments measuring same color: Deviation
- Instrument use different technology, lighting, math
- •With two Instruments double numbers, three= triple...

Interpretation of data reveals:


- (2) i1 Pro1 $\mathbf{EF} = .74$, then workflow $\mathbf{EF} = 3.7$
- (2) i1Pro2 [F] = .28, then workflow [F] = 1.40
- (2) eXact $\mathbf{I} = .10$, then workflow $\mathbf{I} = 0.50$

Capture- Interpreting the Data

"Stacking" Effect of Multiple Instruments

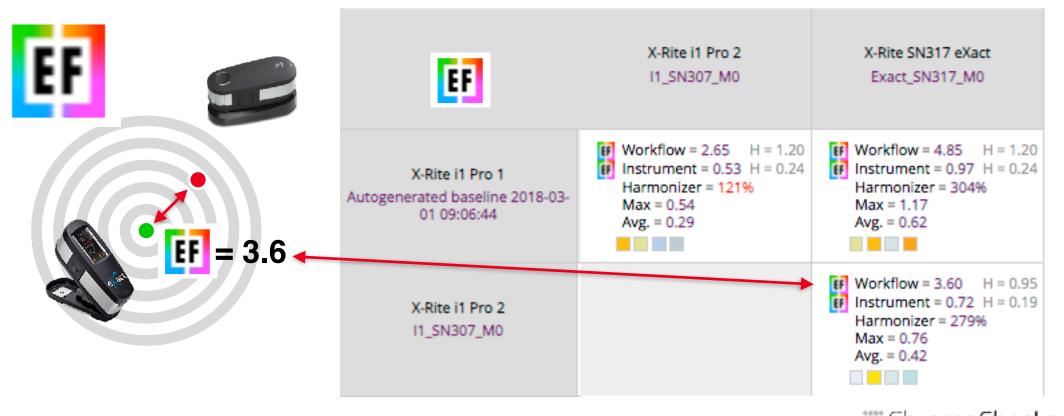
Measuring same color differently results in Deviation
 FAIL customer tolerance before print page 1

Create Profile Instrument A Verify Profile Fails!



Capture- Interpreting the Data

"Stacking" Effect of Multiple Instruments


Measuring same color differently results in Deviation
 FAIL customer tolerance before print page 1

Capture- How Accurate is an Instrument?

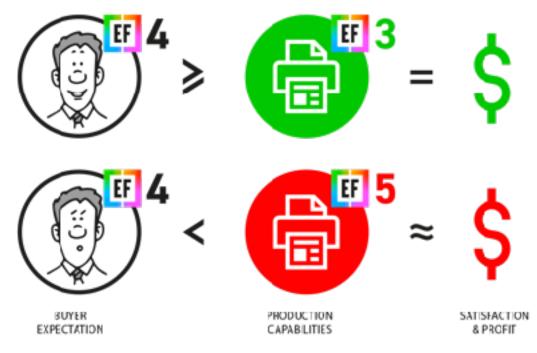
Comparing how different devices measure color

Exposes state of "correctness" and closeness to "bullseye"

Capture- How Accurate is an Instrument?

Comparing how different devices measure color

Exposes state of "correctness" and closeness to "bullseye


If E-Factor Workflow > Tolerance= **PROBLEM**

Capture- Instrument Differences affect Printer E-Factor

If Instrument differences > Tolerance

- Cause the Printer E-Factor to appear to FAIL
- Problem is Instrumentation Differences
- ChromaChecker can minimize this difference: Harmonization

Summary: Capture Instrument

Application and Use Cases

- Multiple instruments measuring same color
- Understand: Capture instruments are different
 - Even two units one serial number apart...
- ChromaChecker Instrument Inspector
 - Assess precision/accuracy each instrument
 - Warn when exceeds Tolerance Expectations
 - Can Harmonize to minimize differences

